Solveeit Logo

Question

Question: \[\frac{1}{2}x^{2} + \frac{2}{3}x^{3} + \frac{3}{4}x^{4} + ......\infty =\]...

12x2+23x3+34x4+......=\frac{1}{2}x^{2} + \frac{2}{3}x^{3} + \frac{3}{4}x^{4} + ......\infty =

A

x1+xloge(1x)\frac{x}{1 + x} - \log_{e}(1 - x)

B

x1+x+loge(1x)\frac{x}{1 + x} + \log_{e}(1 - x)

C

x1xloge(1x)\frac{x}{1 - x} - \log_{e}(1 - x)

D

x1x+loge(1x)\frac{x}{1 - x} + \log_{e}(1 - x)

Answer

x1x+loge(1x)\frac{x}{1 - x} + \log_{e}(1 - x)

Explanation

Solution

1r!loge10- \frac{1}{r!\log_{e}10}

+(11n+1)xn+1++ \left( 1 - \frac { 1 } { n + 1 } \right) x ^ { n + 1 } + \ldots \ldots \infty loge(1+3x+2x2)(1)n[2n+1n]\log_{e}(1 + 3x + 2x^{2})( - 1)^{n}\left\lbrack \frac{2^{n} + 1}{n} \right\rbrack.