Solveeit Logo

Question

Question: $\frac{1}{2\pi KL}$[lnx]$_a^b$=$\frac{1}{2\pi KL}$ ARJUNA A cylindrical brass boiler of radius 15c...

12πKL\frac{1}{2\pi KL}[lnx]ab_a^b=12πKL\frac{1}{2\pi KL}

ARJUNA

A cylindrical brass boiler of radius 15cm and thickness 1.0cm is filled with water and placed in electric heater. If water boils at rate of 200gm/sec. estimate temp of filament (Lv_v= 2.2 x 106^6, K=109J/s-m°C

Answer

671.07°C

Explanation

Solution

The problem describes a cylindrical brass boiler with a given radius and thickness, which is used to boil water at a specified rate. We need to estimate the temperature of the electric heater's filament.

1. Identify Given Parameters:

  • Radius of the boiler, r=15 cm=0.15 mr = 15 \text{ cm} = 0.15 \text{ m}
  • Thickness of the boiler's base (through which heat is conducted), L=1.0 cm=0.01 mL = 1.0 \text{ cm} = 0.01 \text{ m}
  • Rate of water boiling, dMdt=200 gm/sec=0.2 kg/sec\frac{dM}{dt} = 200 \text{ gm/sec} = 0.2 \text{ kg/sec}
  • Latent heat of vaporization of water, Lv=2.2×106 J/kgL_v = 2.2 \times 10^6 \text{ J/kg}
  • Thermal conductivity of brass, K=109 J/s-mCK = 109 \text{ J/s-m}^\circ\text{C}
  • Boiling temperature of water (at atmospheric pressure), Twater=100CT_{water} = 100^\circ\text{C}

2. Calculate the Area of Heat Transfer: Heat is transferred through the circular base of the cylindrical boiler. Area, A=πr2=π(0.15 m)2=0.0225π m2A = \pi r^2 = \pi (0.15 \text{ m})^2 = 0.0225\pi \text{ m}^2

3. Calculate the Rate of Heat Required to Boil Water: The rate at which heat is absorbed by the water to vaporize is given by: dQdt=dMdt×Lv\frac{dQ}{dt} = \frac{dM}{dt} \times L_v dQdt=0.2 kg/s×2.2×106 J/kg=0.44×106 J/s=440000 W\frac{dQ}{dt} = 0.2 \text{ kg/s} \times 2.2 \times 10^6 \text{ J/kg} = 0.44 \times 10^6 \text{ J/s} = 440000 \text{ W}

4. Apply Fourier's Law of Heat Conduction: The rate of heat transfer by conduction through the boiler's base is given by: dQdt=KAΔTL\frac{dQ}{dt} = \frac{K A \Delta T}{L} Where ΔT=TfilamentTwater\Delta T = T_{filament} - T_{water} is the temperature difference across the thickness of the boiler.

5. Solve for the Filament Temperature (TfilamentT_{filament}): Equating the heat required for boiling to the heat transferred by conduction: 440000 W=109 J/s-mC×(0.0225π m2)×(Tfilament100C)0.01 m440000 \text{ W} = \frac{109 \text{ J/s-m}^\circ\text{C} \times (0.0225\pi \text{ m}^2) \times (T_{filament} - 100^\circ\text{C})}{0.01 \text{ m}}

Rearranging the equation to solve for TfilamentT_{filament}: 440000×0.01=109×0.0225π×(Tfilament100)440000 \times 0.01 = 109 \times 0.0225\pi \times (T_{filament} - 100) 4400=(109×0.0225×π)×(Tfilament100)4400 = (109 \times 0.0225 \times \pi) \times (T_{filament} - 100) 4400=(2.4525×π)×(Tfilament100)4400 = (2.4525 \times \pi) \times (T_{filament} - 100) Using π3.14159\pi \approx 3.14159: 4400(2.4525×3.14159)×(Tfilament100)4400 \approx (2.4525 \times 3.14159) \times (T_{filament} - 100) 44007.704665×(Tfilament100)4400 \approx 7.704665 \times (T_{filament} - 100)

Tfilament10044007.704665T_{filament} - 100 \approx \frac{4400}{7.704665} Tfilament100571.07CT_{filament} - 100 \approx 571.07^\circ\text{C} Tfilament571.07C+100CT_{filament} \approx 571.07^\circ\text{C} + 100^\circ\text{C} Tfilament671.07CT_{filament} \approx 671.07^\circ\text{C}

The temperature of the filament is approximately 671C671^\circ\text{C}.

Explanation of the solution:

  1. Calculate the heat transfer area (A=πr2A = \pi r^2).
  2. Determine the rate of heat required to vaporize water (dQdt=dMdt×Lv\frac{dQ}{dt} = \frac{dM}{dt} \times L_v).
  3. Apply Fourier's Law of heat conduction through the boiler's base (dQdt=KA(TfilamentTwater)L\frac{dQ}{dt} = \frac{K A (T_{filament} - T_{water})}{L}).
  4. Substitute known values and solve for TfilamentT_{filament}, assuming water boils at 100C100^\circ\text{C}.

Answer:

The estimated temperature of the filament is approximately 671.07C671.07^\circ\text{C}.