Solveeit Logo

Question

Question: \[\frac{1}{2}\log(1 + \sin^{2}x) + c\]...

12log(1+sin2x)+c\frac{1}{2}\log(1 + \sin^{2}x) + c

A

tan1(sinx)+c\tan^{- 1}(\sin x) + c

B

x3x2+2dx=\int_{}^{}{\frac{x^{3}}{\sqrt{x^{2} + 2}}dx =}

C

13(x2+2)3/2+2(x2+2)1/2+c\frac{1}{3}(x^{2} + 2)^{3/2} + 2(x^{2} + 2)^{1/2} + c

D

13(x2+2)3/22(x2+2)1/2+c\frac{1}{3}(x^{2} + 2)^{3/2} - 2(x^{2} + 2)^{1/2} + c

Answer

x3x2+2dx=\int_{}^{}{\frac{x^{3}}{\sqrt{x^{2} + 2}}dx =}

Explanation

Solution

sin4xcos2x8+c\frac{\sin^{4}x\cos^{2}x}{8} + c

Now put sin4x4+c\frac{\sin^{4}x}{4} + c

then it reduces to sin2x2+c\frac{\sin^{2}x}{2} + c

4sin4x+c4\sin^{4}x + c.