Solveeit Logo

Question

Question: \(\frac{1}{2}\cos^{- 1}(\log x) + c\)...

12cos1(logx)+c\frac{1}{2}\cos^{- 1}(\log x) + c

A

f(x)[f(x)]26mudx=\int_{}^{}\frac{f'(x)}{\lbrack f(x)\rbrack^{2}}\mspace{6mu} dx =

B

[f(x)]1+c- \lbrack f(x)\rbrack^{- 1} + c

C

log[f(x)]+c\log\lbrack f(x)\rbrack + c

D

ef(x)+ce^{f(x)} + c

Answer

ef(x)+ce^{f(x)} + c

Explanation

Solution

sinxcosxacos2x+bsin2xdx=\int_{}^{}{\frac{\sin x\cos x}{a\cos^{2}x + b\sin^{2}x}dx =}

12(ba)log(acos2x+bsin2x)+c\frac{1}{2(b - a)}\log(a\cos^{2}x + b\sin^{2}x) + c.