Solveeit Logo

Question

Question: \(\frac{1^{2}.2}{1!} + \frac{2^{2}.3}{2!} + \frac{3^{2}.4}{3!} + .....\infty =\)\]...

12.21!+22.32!+32.43!+.....=\frac{1^{2}.2}{1!} + \frac{2^{2}.3}{2!} + \frac{3^{2}.4}{3!} + .....\infty =]

A

6e6e

B

7e7e

C

8e8e

D

9e9e

Answer

7e7e

Explanation

Solution

(log3)36\frac{(\log 3)^{3}}{6}

Here 33!\frac{3}{3!}

21.13+32.19+43.127+54.181+......=\frac{2}{1}.\frac{1}{3} + \frac{3}{2}.\frac{1}{9} + \frac{4}{3}.\frac{1}{27} + \frac{5}{4}.\frac{1}{81} + ......\infty =

12loge23\frac{1}{2} - \log_{e}\frac{2}{3}

loge23- \log_{e}\frac{2}{3}.