Solveeit Logo

Question

Question: \[\frac{1}{1.2.3} + \frac{1}{3.4.5} + \frac{1}{5.6.7} + .....\infty =\]...

11.2.3+13.4.5+15.6.7+.....=\frac{1}{1.2.3} + \frac{1}{3.4.5} + \frac{1}{5.6.7} + .....\infty =

A

loge2\log_{e}\sqrt{2}

B

loge212\log_{e}2 - \frac{1}{2}

C

loge2\log_{e}2

D

loge4\log_{e}4

Answer

loge212\log_{e}2 - \frac{1}{2}

Explanation

Solution

We know

e(x12(x1)2+13(x1)314(x1)4+.......)e^{\left( x - \frac{1}{2}(x - 1)^{2} + \frac{1}{3}(x - 1)^{3} - \frac{1}{4}(x - 1)^{4} + ....... \right)} …..(i)

logx\log x........ …..(ii)

Again, log(x1)\log(x - 1)

y=1+x1!+x22!+x33!+......y = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ......\infty …..(iii)

Add (ii) and (iii),

x=x =

logey\log_{e}y …..(iv)

loge1y\log_{e}\frac{1}{y} .

Aliter : eye^{y}

eye^{- y}

1+1+32!+1+3+53!+1+3+5+74!+.......=1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + .......\infty =

Putting e/2e/2

ee,

2e2e

.............................................

.............................................

3e3e

Adding all terms, we get

1.21!+2.32!+3.43!+4.54!+.....=2e\frac{1.2}{1!} + \frac{2.3}{2!} + \frac{3.4}{3!} + \frac{4.5}{4!} + .....\infty = 2e

3e3e

3e13e - 1

ee.