Solveeit Logo

Question

Question: \[\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \frac{1}{4.5} + ........\infty =\]...

11.212.3+13.414.5+........=\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \frac{1}{4.5} + ........\infty =

A

loge(4e)\log_{e}\left( \frac{4}{e} \right)

B

logee4\log_{e}\frac{e}{4}

C

loge4\log_{e}4

D

loge2\log_{e}2

Answer

loge(4e)\log_{e}\left( \frac{4}{e} \right)

Explanation

Solution

We know that, loge2=11.2+13.4+15.6+.......\log_{e}2 = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + .......\infty ..........(i)

Also loge2=1(12.3)(14.5)(16.7).......\log_{e}2 = 1 - \left( \frac{1}{2.3} \right) - \left( \frac{1}{4.5} \right) - \left( \frac{1}{6.7} \right) - .......\infty ………(ii)

By adding (i) and (ii), we get,

2loge2=1+(11.212.3)+(13.414.5)+........2loge21=11.212.3+13.414.5+........11.212.3+13.414.5+........=loge4logee=loge(4e)2\log_{e}2 = 1 + \left( \frac{1}{1.2} - \frac{1}{2.3} \right) + \left( \frac{1}{3.4} - \frac{1}{4.5} \right) + ........ \Rightarrow 2\log_{e}2 - 1 = \frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \frac{1}{4.5} + ........ \Rightarrow \frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \frac{1}{4.5} + ........\infty = \log_{e}4 - \log_{e}e = \log_{e}\left( \frac{4}{e} \right)