Question
Question: $\frac{1}{1 + log_{b} a + log_{b} c} + \frac{1}{1 + log_{c} a + log_{c} b} + \frac{1}{1 + log_{a} b ...
1+logba+logbc1+1+logca+logcb1+1+logab+logac1

A
abc
B
abc1
C
0
Answer
1
Explanation
Solution
Using the properties 1+logxy+logxz=logx(xyz) and logxy1=logyx, the expression simplifies to logabcb+logabcc+logabca=logabc(abc)=1.