Solveeit Logo

Question

Question: \(\frac{1}{1 - \tan x} + c\)...

11tanx+c\frac{1}{1 - \tan x} + c

A

131(1tanx)3+c- \frac{1}{3}\frac{1}{(1 - \tan x)^{3}} + c

B

10x9+10xloge1010x+x106mudx=\int_{}^{}\frac{10x^{9} + 10^{x}\log_{e}10}{10^{x} + x^{10}}\mspace{6mu} dx =

C

121(10x+x10)2+c- \frac{1}{2}\frac{1}{(10^{x} + x^{10})^{2}} + c

D

log(10x+x10)+c\log(10^{x} + x^{10}) + c

Answer

10x9+10xloge1010x+x106mudx=\int_{}^{}\frac{10x^{9} + 10^{x}\log_{e}10}{10^{x} + x^{10}}\mspace{6mu} dx =

Explanation

Solution

sec1x+c\sec^{- 1}x + c

Multiplying cot1x+c\cot^{- 1}x + c and tan1x+c\tan^{- 1}x + c by cos2x+2sin2xcos2xdx=\int_{}^{}{\frac{\cos 2x + 2\sin^{2}x}{\cos^{2}x}dx =} we get

{Putting 2secx+c2\sec x + c

2tanx+c2\tan x + c.