Solveeit Logo

Question

Question: $\frac{1-\sqrt{1-4x^2}}{x}<3$...

114x2x<3\frac{1-\sqrt{1-4x^2}}{x}<3

Answer

[12,0)(0,12]\left[-\frac{1}{2}, 0\right) \cup \left(0, \frac{1}{2}\right]

Explanation

Solution

To solve the inequality 114x2x<3\frac{1-\sqrt{1-4x^2}}{x}<3, we first determine the domain of the expression.

  1. Domain of the expression:
    For 14x2\sqrt{1-4x^2} to be defined, we must have 14x201-4x^2 \ge 0.
    14x2    x214    12x121 \ge 4x^2 \implies x^2 \le \frac{1}{4} \implies -\frac{1}{2} \le x \le \frac{1}{2}.
    Also, the denominator xx cannot be zero, so x0x \ne 0.
    Combining these, the domain for xx is x[12,0)(0,12]x \in \left[-\frac{1}{2}, 0\right) \cup \left(0, \frac{1}{2}\right].

  2. Solve the inequality by considering cases based on the sign of xx:

    Case 1: x>0x > 0
    In this case, x(0,12]x \in \left(0, \frac{1}{2}\right]. Multiply both sides of the inequality by xx (which is positive), so the inequality sign remains the same:
    114x2<3x1-\sqrt{1-4x^2} < 3x
    13x<14x21-3x < \sqrt{1-4x^2}

    We need to consider two sub-cases for 13x1-3x:

    • Subcase 1.1: 13x<01-3x < 0
      This implies 3x>13x > 1, so x>13x > \frac{1}{3}.
      For these values, x(13,12]x \in \left(\frac{1}{3}, \frac{1}{2}\right] (intersecting with the domain x(0,12]x \in \left(0, \frac{1}{2}\right]).
      If 13x1-3x is negative, then 13x<14x21-3x < \sqrt{1-4x^2} is always true, because 14x2\sqrt{1-4x^2} is always non-negative.
      So, x(13,12]x \in \left(\frac{1}{3}, \frac{1}{2}\right] is part of the solution.

    • Subcase 1.2: 13x01-3x \ge 0
      This implies 3x13x \le 1, so x13x \le \frac{1}{3}.
      For these values, x(0,13]x \in \left(0, \frac{1}{3}\right] (intersecting with the domain x(0,12]x \in \left(0, \frac{1}{2}\right]).
      Since both sides of 13x<14x21-3x < \sqrt{1-4x^2} are non-negative, we can square both sides:
      (13x)2<(14x2)2(1-3x)^2 < (\sqrt{1-4x^2})^2
      16x+9x2<14x21 - 6x + 9x^2 < 1 - 4x^2
      13x26x<013x^2 - 6x < 0
      x(13x6)<0x(13x - 6) < 0
      This inequality holds when 0<x<6130 < x < \frac{6}{13}.
      Intersecting this with x(0,13]x \in \left(0, \frac{1}{3}\right]: Since 13=1339\frac{1}{3} = \frac{13}{39} and 613=1839\frac{6}{13} = \frac{18}{39}, we have 13<613\frac{1}{3} < \frac{6}{13}.
      So, the intersection is x(0,13]x \in \left(0, \frac{1}{3}\right].

    Combining the solutions from Subcase 1.1 and Subcase 1.2 for x>0x>0:
    (13,12](0,13]=(0,12]\left(\frac{1}{3}, \frac{1}{2}\right] \cup \left(0, \frac{1}{3}\right] = \left(0, \frac{1}{2}\right].

    Case 2: x<0x < 0
    In this case, x[12,0)x \in \left[-\frac{1}{2}, 0\right). Multiply both sides of the inequality by xx (which is negative), so the inequality sign reverses:
    114x2>3x1-\sqrt{1-4x^2} > 3x
    13x>14x21-3x > \sqrt{1-4x^2}
    Since x<0x < 0, 13x1-3x will be positive (e.g., if x=0.1x=-0.1, 13(0.1)=1.31-3(-0.1) = 1.3). The right side 14x2\sqrt{1-4x^2} is non-negative. Since both sides are non-negative (LHS is positive, RHS is non-negative), we can square both sides:
    (13x)2>(14x2)2(1-3x)^2 > (\sqrt{1-4x^2})^2
    16x+9x2>14x21 - 6x + 9x^2 > 1 - 4x^2
    13x26x>013x^2 - 6x > 0
    x(13x6)>0x(13x - 6) > 0
    This inequality holds when x<0x < 0 or x>613x > \frac{6}{13}.
    Intersecting this with the domain for this case, x[12,0)x \in \left[-\frac{1}{2}, 0\right):
    The part x>613x > \frac{6}{13} does not intersect with x[12,0)x \in \left[-\frac{1}{2}, 0\right).
    The part x<0x < 0 intersects with x[12,0)x \in \left[-\frac{1}{2}, 0\right) to give x[12,0)x \in \left[-\frac{1}{2}, 0\right).

  3. Combine the solutions from Case 1 and Case 2:
    The solution for x>0x>0 is x(0,12]x \in \left(0, \frac{1}{2}\right].
    The solution for x<0x<0 is x[12,0)x \in \left[-\frac{1}{2}, 0\right).
    The overall solution is the union of these two sets:
    x[12,0)(0,12]x \in \left[-\frac{1}{2}, 0\right) \cup \left(0, \frac{1}{2}\right].

The solution covers all values within the domain of the expression, except for x=0x=0.