Solveeit Logo

Question

Question: \[\frac{1 + \frac{2^{2}}{2!} + \frac{2^{4}}{3!} + \frac{2^{6}}{4!} + .....\infty}{1 + \frac{1}{2!} +...

1+222!+243!+264!+.....1+12!+23!+224!+....=\frac{1 + \frac{2^{2}}{2!} + \frac{2^{4}}{3!} + \frac{2^{6}}{4!} + .....\infty}{1 + \frac{1}{2!} + \frac{2}{3!} + \frac{2^{2}}{4!} + ....\infty} =

A

e2e^{2}

B

e21e^{2} - 1

C

e3/2e^{3/2}

D

None of these

Answer

e21e^{2} - 1

Explanation

Solution

loge21\log_{e}2 - 1

loge2\log_{e}2.