Solveeit Logo

Question

Question: \[\frac{1 + 7i}{(2 - i)^{2}} =\]...

1+7i(2i)2=\frac{1 + 7i}{(2 - i)^{2}} =

A

2(cos3π4+isin3π4)\sqrt{2}\left( \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right)

B

2(cosπ4+isinπ4)\sqrt{2}\left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right)

C

(cos3π4+isin3π4)\left( \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right)

D

None of these

Answer

2(cos3π4+isin3π4)\sqrt{2}\left( \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right)

Explanation

Solution

Sol. 1+7i(2i)2=(1+7i)(3+4i)(34i)(3+4i)=25+25i25=1+i\frac{1 + 7i}{(2 - i)^{2}} = \frac{(1 + 7i)(3 + 4i)}{(3 - 4i)(3 + 4i)} = \frac{- 25 + 25i}{25} = - 1 + i

Let z=x+iy=1+iz = x + iy = - 1 + i, ∴ x=rcosθ=1x = r\cos\theta = - 1 and y=rsinθ=1y = r\sin\theta = 1

θ=3π4\theta = \frac{3\pi}{4} and r=2r = \sqrt{2}, Thus 1+7i(2i)2=2[cos3π4+isin3π4]\frac{1 + 7i}{(2 - i)^{2}} = \sqrt{2}\left\lbrack \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right\rbrackAlternative method: 1+7i(2i)2=1+7i34i=2\left| \frac{1 + 7i}{(2 - i)^{2}} \right| = \left| \frac{1 + 7i}{3 - 4i} \right| = \sqrt{2} and arg(1+7i34i)=tan17tan1(43)\left( \frac{1 + 7i}{3 - 4i} \right) = \tan^{- 1}7 - \tan^{- 1}\left( \frac{- 4}{3} \right) =tan17+tan143=3π4= \tan^{- 1}7 + \tan^{- 1}\frac{4}{3} = \frac{3\pi}{4}

1+7i(2i)2=2(cos3π4+isin3π4)\frac{\mathbf{1 + 7i}}{\mathbf{(2}\mathbf{-}\mathbf{i}\mathbf{)}^{\mathbf{2}}}\mathbf{=}\sqrt{\mathbf{2}}\left( \mathbf{\cos}\frac{\mathbf{3\pi}}{\mathbf{4}}\mathbf{+ i}\mathbf{\sin}\frac{\mathbf{3\pi}}{\mathbf{4}} \right)