Solveeit Logo

Question

Question: \[\frac{1 - 2i}{2 + i} + \frac{4 - i}{3 + 2i} =\]...

12i2+i+4i3+2i=\frac{1 - 2i}{2 + i} + \frac{4 - i}{3 + 2i} =

A

2413+1013i\frac{24}{13} + \frac{10}{13}i

B

24131013i\frac{24}{13} - \frac{10}{13}i

C

1013+2413i\frac{10}{13} + \frac{24}{13}i

D

10132413i\frac{10}{13} - \frac{24}{13}i

Answer

10132413i\frac{10}{13} - \frac{24}{13}i

Explanation

Solution

Sol.12i2+i+4i3+2i==(12i)(3+2i)+(4i)(2+i)(2+i)(3+2i)\frac{\mathbf{1 - 2i}}{\mathbf{2 + i}}\mathbf{+}\frac{\mathbf{4 - i}}{\mathbf{3 + 2i}}\mathbf{= =}\frac{\mathbf{(1 - 2i)(3 + 2i) + (4 - i)(2 + i)}}{\mathbf{(2 + i)(3 + 2i)}} =50120i65=10132413i.\mathbf{=}\frac{\mathbf{50}\mathbf{-}\mathbf{120i}}{\mathbf{65}}\mathbf{=}\frac{\mathbf{10}}{\mathbf{13}}\mathbf{-}\frac{\mathbf{24}}{\mathbf{13}}\mathbf{i.}