Solveeit Logo

Question

Mathematics Question on integral

xdx(x1)(x2) equals∫\frac {xdx}{(x-1)(x-2)}\ equals

A

log(x1)2x2+Clog|\frac {(x-1)^2}{x-2}|+C

B

log(x2)2x1+Clog|\frac {(x-2)^2}{x-1}|+C

C

log(x1x2)2+Clog|(\frac {x-1}{x-2})^2|+C

D

log(x1)(x2)+Clog|{(x-1)(x-2)}|+C

Answer

log(x2)2x1+Clog|\frac {(x-2)^2}{x-1}|+C

Explanation

Solution

Let xdx(x1)(x2)\frac {xdx}{(x-1)(x-2)} = A(x1)+B(x2)\frac {A}{(x-1)}+\frac {B}{(x-2)}

x = A(x2)+B(x1)\frac {A}{(x-2)}+\frac {B}{(x-1)} ...(1)

Substituting x = 1 and 2 in (1), we obtain

A=1 and B=2A = −1\ and\ B = 2

x(x1)(x2)\frac {x}{(x-1)(x-2)} = 1(x1)+2(x2)\frac {-1}{(x-1)}+\frac {2}{(x-2)}

∫$$\frac {x}{(x-1)(x-2)}dx = ∫$$[\frac {-1}{(x-1)}+\frac {2}{(x-2)}]dx

                             = $-log\ |x-1|+2log\ |x-2|+C$

                             = $log|\frac {(x-2)^2}{x-1}|+C$

Hence, the correct Answer is B