Solveeit Logo

Question

Mathematics Question on Sequence and series

xyx+12(xyx)2+13(xyx)3+....\frac{x-y}{x}+\frac{1}{2}{{\left( \frac{x-y}{x} \right)}^{2}}+\frac{1}{3}{{\left( \frac{x-y}{x} \right)}^{3}}+.... =

A

loge(xy){{\log }_{e}}\,(x-y)

B

loge(x+y){{\log }_{e}}\,(x+y)

C

loge(xy){{\log }_{e}}\,\left( \frac{x}{y} \right)

D

logexy{{\log }_{e}}\,\,xy

Answer

loge(xy){{\log }_{e}}\,\left( \frac{x}{y} \right)

Explanation

Solution

Using loge(1x)=[x1+x22+x33+....]{{\log }_{e}}(1-x)=-\left[ \frac{x}{1}+\frac{{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3}+.... \right]
Put x=xyxx=\frac{x-y}{x} on both sides, we get
loge(1xyx)=[xyx+12(xyx)2{{\log }_{e}}\left( 1-\frac{x-y}{x} \right)=-\left[ \frac{x-y}{x}+\frac{1}{2}{{\left( \frac{x-y}{x} \right)}^{2}} \right.
+13(xyx)3+....]\left. +\frac{1}{3}{{\left( \frac{x-y}{x} \right)}^{3}}+.... \right]
\Rightarrow xyx+12(xyx)2+13(xyx)3+....\frac{x-y}{x}+\frac{1}{2}{{\left( \frac{x-y}{x} \right)}^{2}}+\frac{1}{3}{{\left( \frac{x-y}{x} \right)}^{3}}+....
=loge(yx)=-{{\log }_{e}}\left( \frac{y}{x} \right)
=logexy={{\log }_{e}}\frac{x}{y}