Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

sin60+icos60cos15isin15=\frac{sin\,60^{\circ}+i\,cos\,60^{\circ}}{cos\,15^{\circ}-i\,sin\,15^{\circ}}=

A

12+i12\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}

B

12i12\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}

C

12+i12-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}

D

12+i32\frac{1}{2}+i \frac{\sqrt{3}}{2}

Answer

12+i12\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}

Explanation

Solution

We have, sin60+icos60cos15isin15×cos15+isin15cos15+isin15\frac{sin\,60^{\circ} + i\, cos\, 60^{\circ}}{cos\, 15^{\circ} - i \,sin \,15^{\circ}} \times \frac{cos\,15^{\circ} + i \,sin\,15^{\circ}}{cos\, 15^{\circ} + i\, sin\,15^{\circ}} =(sin60cos15cos60sin15)+i(cos60cos15+sin60sin15)cos215+sin215= \frac{(sin\,60^{\circ} cos \,15^{\circ} - cos 60^{\circ} sin 15^{\circ}) + i(cos 60^{\circ} cos 15^{\circ} + sin \,60^{\circ} sin\,15^{\circ})}{cos^{2} 15^{\circ} + sin^{2} 15^{\circ}} =sin(6015)+icos(6015) = sin (60^{\circ} - 15^{\circ}) + i \, cos (60^{\circ} - 15^{\circ}) =sin45+icos45=12+i12= sin\,45^{\circ} + i \,cos\,45^{\circ}= \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}