Solveeit Logo

Question

Mathematics Question on integral

ππ22sin7xdx∫^\frac{π}{2}_{\pi}{2}sin^7xdx

Answer

Let I=ππ22sin7xdx.....(1)∫^\frac{π}{2}_{\pi}{2}sin^7xdx.....(1)

Assin7(x)=(sin(x))7=(sinx)7=sin7x,therefore,sin2xisanoddfunction.As sin^7(−x)=(sin(−x))^7=(−sinx)^7=−sin^7x,therefore,sin^2x is an odd function.

Itisknownthat,iff(x)isanoddfunction,thenaaƒ(x)dx=0It is known that,if f(x)is an odd function,then ∫^a_-aƒ(x)dx=0

I=π2π2sin7xdx=0∴I=∫^\frac{π}{2}_\frac{π}{2}sin^7xdx=0