Solveeit Logo

Question

Mathematics Question on integral

ex(2+ex)(ex+1)\frac {e^x}{(2+e^x)(e^x +1)}dx = (where C is a constant of integration.)

A

log (ex+2ex+1)(\frac {e^x + 2}{e^x +1}) + C

B

log (exex+2)(\frac {e^x}{e^x +2}) + C

C

(ex+1ex+2)(\frac {e^x + 1}{e^x +2}) + C

D

log (ex+1ex+2)(\frac {e^x + 1}{e^x +2}) + C

Answer

log (ex+1ex+2)(\frac {e^x + 1}{e^x +2}) + C

Explanation

Solution

Let ex = t Then ex dx = dt
I = ∫ex(2+ex)(ex+1)\frac {e^x}{(2+e^x)(e^x +1)}dx
I = ∫1(2+t)(t+1)\frac {1}{(2+t)(t +1)} dt
I = ∫(1t+112+t)(\frac {1}{t +1} - \frac {1}{2+t}) dt
I = ∫1t+1\frac {1}{t +1} dt - ∫ 12+t\frac {1}{2+t}dt
I = log (1+t) - log (2+t) +C
I = log (1+t2+t)(\frac {1+t}{2+t}) + C
Put t = ex
I = log (1+ex2+ex)(\frac {1+e^x}{2+e^x}) + C
I = log (ex+1ex+2)(\frac {e^x+1}{e^x +2}) + C
Therefore, the correct option is (D) log (ex+1ex=2)(\frac {e^x+1}{e^x =2}) + C