Question
Mathematics Question on Differential equations
dxdy + x(1+x5)5y = x7(1+x5)2 If y(1) = 2, then the value of y(2) is:
A
128693
B
128697
C
128637
D
128627
Answer
128693
Explanation
Solution
The correct option is (A): 128693
I.F=e∫x(1+x5)5dx=e∫(x−5+1)5x−6dx
=e−ln(x−5+1)=x−5+11=x5+1x5
y.x5+1x5=∫x7(1+x5)2.(1+x5)x5dx
=∫x2(1+x5)dx
=x−1+4x4+C
y(1)=2⇒2(21)=−1+41+C
⇒C=47
Put x=2
⇒y(3332)=2−1+4+47
⇒y=128693