Solveeit Logo

Question

Mathematics Question on integral

dxx(x2+1) equals∫\frac {dx}{x(x^2+1)} \ equals

A

logx12log(x2+1)+Clog|x|-\frac 12log(x^2+1)+C

B

logx+12log(x2+1)+Clog|x|+\frac 12log(x^2+1)+C

C

logx+12log(x2+1)+C-log|x|+\frac 12log(x^2+1)+C

D

12logx+log(x2+1)+C\frac 12log|x|+log(x^2+1)+C

Answer

logx12log(x2+1)+Clog|x|-\frac 12log(x^2+1)+C

Explanation

Solution

Let 1x(x2+1)\frac {1}{x(x^2+1)} = Ax+Bx+Cx2+1\frac Ax+\frac {Bx+C}{x^2+1}

1=A(x2+1)+(Bx+C)x1 = A(x^2+1)+(Bx+C)x

Equating the coefficients of x2, x, and constant term, we obtain
A + B = 0
C = 0
A = 1
On solving these equations, we obtain
A = 1, B = −1, and C = 0

1x(x2+1)\frac {1}{x(x^2+1)} = 1x+xx2+1\frac 1x+\frac {-x}{x^2+1}

∫$$\frac {1}{x(x^2+1)} dx = ∫$$\frac 1x-\frac {x}{x^2+1}dx

                           = $log|x|-\frac 12log|x^2+1|+C$

Hence, the correct Answer is (A).