Solveeit Logo

Question

Mathematics Question on integral

dx9x4x2∫\frac{dx}{\sqrt{9x-4x^2}} equals

A

19sin1(9x88)+C\frac{1}{9}sin^{-1}(\frac{9x-8}{8})+C

B

12sin1(8x99)+C\frac{1}{2}sin^{-1}(\frac{8x-9}{9})+C

C

13sin1(9x88)+C\frac{1}{3}sin^{-1}(\frac{9x-8}{8})+C

D

12sin1(9x89)+C\frac{1}{2}sin^{-1}(\frac{9x-8}{9})+C

Answer

12sin1(8x99)+C\frac{1}{2}sin^{-1}(\frac{8x-9}{9})+C

Explanation

Solution

The correct answer is B: =12sin1(8x99)+C= \frac{1}{2}sin^{-1}(\frac{8x-9}{9})+C
dx9x4x2∫\frac{dx}{\sqrt{9x-4x^2}}
=14(x294x)dx= ∫\frac{1}{\sqrt{-4(x^2-\frac{9}{4x})}}dx
=14(x294x+81648164)dx= ∫\frac{1}{-4(x^2-\frac{9}{4}x+\frac{81}{64}-\frac{81}{64})}dx
=14[(x98)2(98)2]dx= ∫\frac{1}{\sqrt{-4[(x-\frac{9}{8})^2-(\frac{9}{8})^2}}] dx
=121(98)2(x98)2dx=\frac{1}{2} ∫\frac{1}{\sqrt{(\frac{9}{8})^2 - (x-\frac{9}{8})^2}} dx
=12[sin1(x9898)]+C=\frac{1}{2}[sin^{-1}\bigg(\frac{x-\frac{9}{8}}{\frac{9}{8}}\bigg)]+C (dya2y2=sin1ya+C)( ∫\frac{dy}{\sqrt{a^2-y^2}} = sin^{-1} \frac{y}{a}+C)
=12sin1(8x99)+C= \frac{1}{2}sin^{-1}(\frac{8x-9}{9})+C
Hence, the correct Answer is B.