Solveeit Logo

Question

Mathematics Question on integral

dxex+ex∫\frac{dx}{e^x+e^{-x}} is equal to

A

tan1(ex)+Ctan^{-1}(e^x)+C

B

tan1(ex)+Ctan^{-1}(e^{-x})+C

C

tan1(exex)+Ctan^{-1}(e^x-e^{-x})+C

D

log(ex+ex)+Clog(e^x+e^{-x})+C

Answer

tan1(ex)+Ctan^{-1}(e^x)+C

Explanation

Solution

The correct answer is A:=tan1(ex)+C=tan^{-1}(e^x)+C
Let I=dxex+exdx=exe2x+1dxI=∫\frac{dx}{e^x+e^{-x}}dx=∫\frac{e^x}{e^{2x}+1}dx
Also,let ex=texdx=dte^x=t⇒e^x dx=dt
I=dt1+t2∴I=∫\frac{dt}{1+t^2}
=tan1+C=tan^{-1}+C
=tan1(ex)+C=tan^{-1}(e^x)+C
Hence,the correct Answer is A.