Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

ddx(xx)\frac{d}{dx} (x^x) is equal to

A

xxlog(e/x)x^x \, \log(e/x)

B

xxlogexx^x \, \log \, ex

C

logex\log \, ex

D

xxlogxx^x \, \log \, x

Answer

xxlogexx^x \, \log \, ex

Explanation

Solution

Let y=xxy=x^{x}
logy=xlogx\Rightarrow \log y=x \log x
On differentiating w.r.t. xx, we get
1ydydx=xx+logx\frac{1}{y} \frac{d y}{d x}=\frac{x}{x}+\log x
dydx=y(1+logx)\Rightarrow \frac{d y}{d x}=y(1+\log x)
=xx(loge+logx)=x^{x}(\log e+\log x)
=xx(logex)=x^{x}(\log e x)