Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

\frac{d}{dx}\left\\{cosec^{-1}\left(\frac{1+x^{2}}{2x}\right)\right\\} is equal to

A

21+x2\frac{2}{1+x^{2}}, x0x \ne0

B

2(1+x)1+x2\frac{2\left(1+x\right)}{1+x^{2}}, x0x \ne0

C

2(1x2)(1+x2)1x2\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left|1-x^{2}\right|}, x±1x \ne\pm1, 00

D

None of these

Answer

21+x2\frac{2}{1+x^{2}}, x0x \ne0

Explanation

Solution

let y=cosec1(1+x22x) y = cosec^{-1} \left(\frac{1+x^{2}}{2x}\right) y=sin1(2x1+x2)y = sin^{-1}\left(\frac{2x}{1+x^{2}}\right) put x=tanθ,θ=tan1xx = tan \theta, \,\,\, \theta = tan^{-1}x =sin1(2tanθ1+tan2θ)= sin^{-1}\left(\frac{2 tan \theta}{1+tan^{2} \theta}\right) =sin1(sin2θ)= sin^{-1} (sin 2\theta) y=2θ=2tan1xy = 2\theta = 2tan^{-1}x dydx=21+x2\frac{dy}{dx} = \frac{2}{1+x^2} 21+x2\therefore \frac{2}{1+x^{2}}, x0iscorrectx \ne0 is correct