Solveeit Logo

Question

Mathematics Question on limits and derivatives

ddx[atan1x+blog(x1x1)]=1x41a2b=\frac{d}{dx} \left[a \tan^{-1} x+ b \log \left(\frac{x-1}{x1}\right)\right] = \frac{1}{x^{4} -1}\Rightarrow a - 2b=

A

1

B

-1

C

0

D

2

Answer

-1

Explanation

Solution

ddx[atan1x+blog(x1x+1)]=1x41\frac{d}{dx} \left[a \tan^{-1} x+ b \log \left(\frac{x-1}{x + 1}\right)\right] = \frac{1}{x^{4} -1} a1+x2+b[1x11x+1]=1x41 \Rightarrow \frac{a}{1+x^{2}} + b \left[\frac{1}{x-1} - \frac{1}{x+1} \right] = \frac{1}{x^{4} -1} a1+x2+b.2x21=1x41\Rightarrow \frac{a}{1+x^{2}} + b . \frac{2}{x^{2} -1} = \frac{1}{x^{4} -1} a(x21)+2b(1+x2)x41=1x41\Rightarrow \frac{a\left(x^{2} -1\right) + 2b \left(1+x^{2}\right)}{x^{4} -1} = \frac{1}{x^{4} -1} a(x21)+2b(1+x2)=1\Rightarrow a\left(x^{2} -1\right) +2b\left(1+x^{2}\right) = 1 (a+2b)x2+(2ba)=1 \Rightarrow \left(a+2b\right)x^{2} + \left(2b -a\right) = 1 2ba=1 \therefore 2b -a = 1 and a+2b=0a+2b =0 a2b=1\therefore a -2b = - 1