Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

d2xdy2\frac{d^{2}x}{dy^{2}} equals :

A

(d2ydx2)1(dydx)3-\left(\frac{d^{2}y}{dx^{2}}\right)^{-1} \left(\frac{dy}{dx}\right)^{-3}

B

(d2ydx2)(dydx)2\left(\frac{d^{2}y}{dx^{2}}\right) \left(\frac{dy}{dx}\right)^{-2}

C

(d2ydx2)(dydx)3-\left(\frac{d^{2}y}{dx^{2}}\right)\left(\frac{dy}{dx}\right)^{-3}

D

(d2ydx2)1\left(\frac{d^{2}y}{dx^{2}}\right)^{-1}

Answer

(d2ydx2)(dydx)3-\left(\frac{d^{2}y}{dx^{2}}\right)\left(\frac{dy}{dx}\right)^{-3}

Explanation

Solution

d2xdy2=ddy(dxdy)=ddx(dxdy)dxdy\frac{d^{2}x}{dy^{2}} = \frac{d}{dy} \left(\frac{dx}{dy}\right) = \frac{d}{dx}\left(\frac{dx}{dy}\right) \frac{dx}{dy} =ddx(1dy/dx)dxdy= \frac{d}{dx}\left(\frac{1}{dy/dx}\right) \frac{dx}{dy} =1(dydx)2.d2ydx2.1dydx= - \frac{1}{\left(\frac{dy}{dx}\right)^{2}} . \frac{d^{2}y}{dx^{2}}. \frac{1}{\frac{dy}{dx}} =1(dydx)3d2ydx2=- \frac{1}{\left(\frac{dy}{dx}\right)^{3}} \frac{d^{2}y}{dx^{2}}