Solveeit Logo

Question

Mathematics Question on integral

cos2x(sinx+cosx)2dx∫\frac{cos2x}{(sinx+cosx)^2}dx is equal to

A

1sinx+cosx+C\frac{-1}{sinx+cosx}+C

B

logsinx+cosx+Clog|sinx+cosx|+C

C

logsinxcosx+Clog|sinx-cosx|+C

D

1(sinx+cosx)2\frac{1}{(sinx+cosx)^2}

Answer

logsinx+cosx+Clog|sinx+cosx|+C

Explanation

Solution

The correct answer is B:=logcosx+sinx+C=log|cosx+sinx|+C
Let I=cos2x(sinx+cosx)2I=∫\frac{cos2x}{(sinx+cosx)^2}
I=cos2xsin2x(cosx+sinx)dxI=∫\frac{cos^2x-sin^2x}{(cosx+sinx)}dx
=(cosx+sinx)(cosxsinx)(cosx+sinx)2dx=∫\frac{(cosx+sinx)(cosx-sinx)}{(cosx+sinx)^2}dx
=cosxsinxcosx+sinxdx=∫\frac{cosx-sinx}{cosx+sinx}dx
Let cosx+sinx=t(cosxsinx)dx=dtcosx+sinx=t⇒(cosx-sinx)dx=dt
I=dtt∴I=∫\frac{dt}{t}
=logt+C=log|t|+C
=logcosx+sinx+C=log|cosx+sinx|+C
Hence,the correct Answer is B.