Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

cosxcosx2y=λtanxy\frac{\cos \, x}{\cos \, x -2y} = \lambda \, \Rightarrow \, \tan \, x - y is equal to

A

1+λ1λ\frac{1 + \lambda}{1 - \lambda}

B

1λ1+λ\frac{1 - \lambda}{1 + \lambda}

C

λ1+λ\frac{ \lambda}{1 + \lambda}

D

λ1λ\frac{ \lambda}{1 - \lambda}

Answer

1λ1+λ\frac{1 - \lambda}{1 + \lambda}

Explanation

Solution

Now, tan(xy)tany\tan (x - y) \, \tan \, y
=sinxysinycosxycosy×22= \frac{\sin \, x-y \, \sin \, y}{\cos \, x-y \, \cos \, y} \times \frac{2}{2}
=cosx2ycosxcosx2y+cosx= \frac{\cos \, x-2y - \cos \, x}{\cos \, x - 2y + \cos \, x}
=1cosxcosx2y1+cosxcosx2y= \frac{1 - \frac{\cos \, x}{\cos \, x - 2y}}{ 1 + \frac{\cos \, x}{ \cos \, x -2y}}
=1λ1+λ= \frac{1 - \lambda}{ 1 +\lambda}
Given , λ=cosxcosx2y\lambda = \frac{\cos \, x}{ \cos \, x - 2y}