Question
Mathematics Question on Binomial theorem
1C0+3C2+5C4+7C6+........=
A
n+12n+1
B
n+12n+1−1
C
n+12n
D
None of these
Answer
n+12n
Explanation
Solution
Putting the value of C0,C2,C4....., we get =1+3.2!n(n+1)+5.4!n(n−1)(n−2)(n−3)+.....=n+11 [(n+1)+3!(n+1)n(n−1)+5!(n+1)n(n−1)(n−2)(n−3)+.....] Put n+1=N =N1[N+3!N(N−1)(N−2)+5!N(N−1)(N−2)(N−3)(N−4)+.....] = \frac{1}{N} \left\\{^{N}C_{1}+^{N}C_{3}+^{N}C_{5} + .....\right\\} = \frac{1}{N} \left\\{2^{N-1}\right\\} = \frac{2^{n}}{n+1}\quad\left\\{\because N = n+1\right\\}