Solveeit Logo

Question

Mathematics Question on Binomial theorem

8C068C1+8C268C3.62+....+8C867\frac{^{8}{{C}_{0}}}{6}{{-}^{8}}{{C}_{1}}{{+}^{8}}{{C}_{2}}\cdot 6{{-}^{8}}{{C}_{3}}{{.6}^{2}}+....{{+}^{8}}{{C}_{8}}{{\cdot 6}^{7}} is equal to

A

00

B

67{{6}^{7}}

C

68{{6}^{8}}

D

586\frac{{{5}^{8}}}{6}

Answer

586\frac{{{5}^{8}}}{6}

Explanation

Solution

8C068C1+8C2.68C362+....+8C867\frac{^{8}{{C}_{0}}}{6}{{-}^{8}}{{C}_{1}}{{+}^{8}}{{C}_{2}}.6{{-}^{8}}{{C}_{3}}{{6}^{2}}+....{{+}^{8}}{{C}_{8}}{{6}^{7}}
=16[3C068C1+628C2638C3+....+686C8]=\frac{1}{6}{{[}^{3}}{{C}_{0}}-{{6}^{8}}{{C}_{1}}+{{6}^{2}}{{\,}^{8}}{{C}_{2}}-{{6}^{3}}{{\,}^{8}}{{C}_{3}}+....+{{6}^{8}}{{\,}^{6}}{{C}_{8}}]
=16[(16)8]=586=\frac{1}{6}[{{(1-6)}^{8}}]=\frac{{{5}^{8}}}{6}