Solveeit Logo

Question

Mathematics Question on integral

5(x6+1)X+1\frac {5(x^6+1)}{X+1}dx = (where C is a constant of integration.)

A

5x77\frac {5x^7}{7}+ 5x + 5 tan-1 x + c

B

5 tan–1 x + log (x2 + 1) + C

C

5(x + 1) + log (x + 1) + C

D

x5 – 5x33\frac {5x^3}{3} + 5x + C

Answer

x5 – 5x33\frac {5x^3}{3} + 5x + C

Explanation

Solution

Let I = ∫5(x6+1)X+1\frac {5(x^6+1)}{X+1}dx
I = 5 ∫ (x2)3+(1)3X+1\frac {(x^2)^3+(1)^3}{X+1}dx
I =5 ∫ (x2+1)(x4x2+1)(X2+1)\frac {(x^2 +1) (x^4 -x^2 +1)}{(X^2+1)}dx
I =5 ∫ (x4 -x2 +1) dx
I =5 ∫ x4 dx - 5 ∫ x2 dx + 5 ∫ 1 dx
I = 5 x x55\frac {x^5}{5} - 5x33\frac {x^3}{3} + 5x + C
I = x5 – 5x33\frac {5x^3}{3} + 5x + C
Therefore, the correct option is (D) x5 – 5x33\frac {5x^3}{3} + 5x + C