Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

3x2+1x26x+8\frac {3x^2+1}{x^2-6x+8} is equal to

A

492(x4)132(x2)\frac{49}{2(x-4)}-\frac {13}{2(x-2)}

B

3+492(x4)132(x2)3+\frac{49}{2(x-4)}-\frac {13}{2(x-2)}

C

492(x4)+132(x2)\frac{49}{2(x-4)}+\frac {13}{2(x-2)}

D

492(x4)+132(x2)\frac{-49}{2(x-4)}+\frac {13}{2(x-2)}

Answer

3+492(x4)132(x2)3+\frac{49}{2(x-4)}-\frac {13}{2(x-2)}

Explanation

Solution

Given, 3x2+1x26x+8\frac{3x^{2} + 1}{x^{2} -6x +8}
On dividing, we get
3x2+1x26x+8=3+18x23x26x+8.....(i)\frac{3x^{2} + 1}{x^{2} -6x + 8} = 3 + \frac{18x -23}{x^{2} -6x +8} .....\left(i\right)
Now, 18x23(x2)(x4)=Ax2+Bx4\frac{18x -23}{\left(x-2\right)\left(x-4\right)} = \frac{A}{x-2} + \frac{B}{x-4}
  18x23=A(x4)+B(x2)\Rightarrow \; 18 x - 23 = A (x - 4) + B (x - 2)
  18x23=(A+B)x4A2B\Rightarrow \; 18 x - 23 = (A + B) x - 4 A - 2B
Equating the coefficient of x and constant
term, we get
A + B = 18
- 4 A - 2 B = -23
On solving these equations, we get
A=132,B=492A = - \frac{13}{2}, B = \frac{49}{2}
18x23(x2)(x4)=132(x2)+492(x4)\therefore \frac{18x -23}{\left(x-2\right)\left(x-4\right)} = - \frac{13}{2\left(x-2\right)} + \frac{49}{2\left(x-4\right)}
Then, from E (i), we get
3x2+1x26x+8=3132(x2)+492(x4)\frac{3x^{2}+1}{x^{2} -6x +8} = 3- \frac{13}{2\left(x-2\right)} + \frac{49}{2\left(x-4\right)}