Question
Mathematics Question on Integration by Partial Fractions
x2−6x+83x2+1 is equal to
A
2(x−4)49−2(x−2)13
B
3+2(x−4)49−2(x−2)13
C
2(x−4)49+2(x−2)13
D
2(x−4)−49+2(x−2)13
Answer
3+2(x−4)49−2(x−2)13
Explanation
Solution
Given, x2−6x+83x2+1
On dividing, we get
x2−6x+83x2+1=3+x2−6x+818x−23.....(i)
Now, (x−2)(x−4)18x−23=x−2A+x−4B
⇒18x−23=A(x−4)+B(x−2)
⇒18x−23=(A+B)x−4A−2B
Equating the coefficient of x and constant
term, we get
A + B = 18
- 4 A - 2 B = -23
On solving these equations, we get
A=−213,B=249
∴(x−2)(x−4)18x−23=−2(x−2)13+2(x−4)49
Then, from E (i), we get
x2−6x+83x2+1=3−2(x−2)13+2(x−4)49