Question
Mathematics Question on Methods of Integration
1−tan2x1+tan2xdx is equal to
A
log1+tanx1−tanx+c
B
log1−tanx1+tanx+c
C
21log1+tanx1−tanx+c
D
21log1−tanx1+tanx+c
Answer
21log1−tanx1+tanx+c
Explanation
Solution
∫1−tan2(x)1+tan2(x)dx=∫1−tan2(x)sec2(x)dx
Apply u− substitution :u=tan(x)
∫1−u21du
Use the common integral :
∫1−u21du=2ln∣u+1∣−2ln∣u−1∣
=2ln∣u+1∣−2ln∣u−1∣
Substitute back u=tan(x)
=2ln∣tan(x)+1∣−2ln∣tan(x)−1∣
Add a constant to the solution
=2ln∣tan(x)+1∣−2ln∣tan(x)−1∣+C
=21log1−tanx1+tanx+C