Solveeit Logo

Question

Mathematics Question on Methods of Integration

1+tan2x1tan2xdx\frac{1+\tan ^{2} x}{1-\tan ^{2} x} d x is equal to

A

log1tanx1+tanx+c\log \frac{1-\tan x}{1+\tan x}+c

B

log1+tanx1tanx+c\log \frac{1+\tan x}{1-\tan x}+c

C

12log1tanx1+tanx+c\frac{1}{2} \log \frac{1-\tan x}{1+\tan x}+c

D

12log1+tanx1tanx+c\frac{1}{2} \log \frac{1+\tan x}{1-\tan x}+c

Answer

12log1+tanx1tanx+c\frac{1}{2} \log \frac{1+\tan x}{1-\tan x}+c

Explanation

Solution

1+tan2(x)1tan2(x)dx=sec2(x)1tan2(x)dx\int \frac{1+\tan ^{2}( x )}{1-\tan ^{2}( x )} dx =\int \frac{\sec ^{2}( x )}{1-\tan ^{2}( x )} dx
Apply uu- substitution :u=tan(x): u=\tan (x)
11u2du\int \frac{1}{1-u^{2}} d u
Use the common integral :
11u2du=lnu+12lnu12\int \frac{1}{1-u^{2}} d u=\frac{\ln |u+1|}{2}-\frac{\ln |u-1|}{2}
=lnu+12lnu12=\frac{\ln | u +1|}{2}-\frac{\ln | u -1|}{2}
Substitute back u=tan(x)u=\tan (x)
=lntan(x)+12lntan(x)12=\frac{\ln |\tan ( x )+1|}{2}-\frac{\ln |\tan ( x )-1|}{2}
Add a constant to the solution
=lntan(x)+12lntan(x)12+C=\frac{\ln |\tan ( x )+1|}{2}-\frac{\ln |\tan ( x )-1|}{2}+ C
=12log1+tanx1tanx+C=\frac{1}{2} \log \frac{1+\tan x }{1-\tan x }+ C