Question
Mathematics Question on Trigonometric Functions
sinθ1−cosθ3=
A
sin2θ4cos(3π−θ)=
B
sin2θ4sin(3π−θ)=
C
sin2θ4cos(3π+θ)=
D
sin2θ4sin(3π+θ)=
Answer
sin2θ4cos(3π+θ)=
Explanation
Solution
sinθ1−cosθ3=sinθcosθcosθ−sinθ3
Putting 1=rcosϕ and 3=rsinϕ, we get
∴r=1+3=2 and tanϕ=13=tan3π
⇒ϕ=3π
∴sinθ1−cosθ3=sinθcosθrcosϕcosθ−rsinϕsinθ
=2sinθcosθ2r(cosϕcosθ−sinϕsinθ)
=sin2θ2.2cos(ϕ+θ)=sin2θ4cos(3π+θ)