Solveeit Logo

Question

Mathematics Question on binomial expansion formula

1e3x(ex+e5x)=a0+a1x+a2x2+\frac{1}{e^{3 x}}\left(e^{x}+e^{5 x}\right)=a_{0}+a_{1} x +a_{2} x^{2}+\ldots 2a1+23a3+25a5+\Rightarrow 2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots is equal to

A

ee

B

e1e^{-1}

C

1

D

0

Answer

0

Explanation

Solution

The correct option is(D): 0.

Given, 1e3x(ex+e5x)=a0+a1x+a2x2+\frac{1}{e^{3 x}}\left(e^{x}+e^{5 x}\right)=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots
(e2x+e2x)=a0+a1x+a2x2+\Rightarrow \left(e^{-2 x}+e^{2 x}\right)=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots
2[1+(2x)22!+(2x)44!+]\Rightarrow 2\left[1+\frac{(2 x)^{2}}{2 !}+\frac{(2 x)^{4}}{4 !}+\ldots\right]
=a0+a1x+a2x2+=a_{0}+a_{1} x+ a_{2} x^{2}+\ldots
a1=a3=a5==0\Rightarrow a_{1}=a_{3}=a_{5}=\ldots=0
2a1+23a3+25a5+=0\therefore 2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots=0