Solveeit Logo

Question

Mathematics Question on Permutations

13!+25!+37!+...\frac{1}{3!}+\frac{2}{5!}+\frac{3}{7!}+... is equal to

A

e12\frac{{{e}^{-1}}}{2}

B

ee

C

e4\frac{e}{4}

D

e6\frac{e}{6}

Answer

e12\frac{{{e}^{-1}}}{2}

Explanation

Solution

Let S=13!+25!+37!+.....S=\frac{1}{3!}+\frac{2}{5!}+\frac{3}{7!}+.....
\therefore Tn=n(2n+1)!{{T}_{n}}=\frac{n}{(2n+1)!}
=12[2n+11(2n+1)!]=12[1(2n)!1(2n+1)!]=\frac{1}{2}\left[ \frac{2n+1-1}{(2n+1)!} \right]=\frac{1}{2}\left[ \frac{1}{(2n)!}-\frac{1}{(2n+1)!} \right]
\therefore T1=12(12!13!){{T}_{1}}=\frac{1}{2}\left( \frac{1}{2!}-\frac{1}{3!} \right)
T2=12(14!15!){{T}_{2}}=\frac{1}{2}\left( \frac{1}{4!}-\frac{1}{5!} \right)
\therefore S=T1+T2+....S={{T}_{1}}+{{T}_{2}}+....
=12[12!13!+14!15!+.....+11]=\frac{1}{2}\left[ \frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+.....\infty +1-1 \right]
=e12=\frac{{{e}^{-1}}}{2}