Solveeit Logo

Question

Question: \(\frac{- 462a^{5}}{b^{6}}\)=...

462a5b6\frac{- 462a^{5}}{b^{6}}=

A

462a6b5\frac{- 462a^{6}}{b^{5}}

B

m=0100100Cm(x3)100m.2m\sum_{m = 0}^{100}{100C_{m}(x - 3)^{100 - m}}.2^{m}

C

x53x^{53}

D

None of these

Answer

x53x^{53}

Explanation

Solution

Putting the values of nCr(3r2n)nC_{r}(3^{r} - 2^{n}) we get

nCr(3r+2nr)nC_{r}(3^{r} + 2^{n - r})

=(α2x22α x+1)51(\alpha^{2}x^{2} - 2\alpha\ x + 1)^{51}

Put α\alpha = N

= x+y=1x + y = 1

r=0nr2nCrxrynr\sum_{r = 0}^{n}{{r^{2}}^{n}C_{r}x^{r}y^{n - r}}

nx(x+yn)nx(x + yn) nx(nx+y)nx(nx + y)

Trick : Put n=1, then 4nC0+4nC4+4nC8+....+4nC4n4nC_{0} +^{4n}C_{4} +^{4n}C_{8} + .... +^{4n}C_{4n}

At n=2, 24n2+(1)n22n12^{4n - 2} + ( - 1)^{n}2^{2n - 1}

Also (3) 24n2+22n12^{4n - 2} + 2^{2n - 1}