Solveeit Logo

Question

Physics Question on Gravitational Potential Energy

Four spheres each of mass m form a square of side d (as shown in figure). A fifth sphere of mass M is situated at the centre of square. The total gravitational potential energy of the system is:
Four spheres each of mass m form a square of side d

A

Gmd[(4+2)m+42M]−\frac{Gm}{d}\bigg[\bigg(4+\sqrt2\bigg)m+4\sqrt2M\bigg]

B

Gmd[(4+2)M+42m]−\frac{Gm}{d}\bigg[\bigg(4+\sqrt2\bigg)M+4\sqrt2m\bigg]

C

Gmd[3m2+42M]−\frac{Gm}{d}\bigg[3m^2+4\sqrt2M\bigg]

D

Gmd[6m2+42M]−\frac{Gm}{d}\bigg[6m^2+4\sqrt2M\bigg]

Answer

Gmd[(4+2)m+42M]−\frac{Gm}{d}\bigg[\bigg(4+\sqrt2\bigg)m+4\sqrt2M\bigg]

Explanation

Solution

Total gravitational potential energy

=4GMmd2+4Gm2d+2Gm22d−{\frac{4GMm}{\frac{d}{\sqrt2}}+\frac{4Gm^2}{d}+\frac{2Gm^2}{\sqrt2d}\\\\}

=GmdM42+(4+2)m−\frac{Gm}{d}\\{{M4\sqrt2+(4+\sqrt2)m}\\}

=Gmd42M+(4+2)m−\frac{Gm}{d}\\{{4\sqrt2M+(4+\sqrt2)m}\\}