Solveeit Logo

Question

Question: Four spheres, each of mass \(M\) and radius \(r\) are situated at the four corners of square of s...

Four spheres, each of mass MM and radius rr are situated at the four corners of square of side RR. The moment of inertia of the system about an axis perpendicular to the plane of square and passing through its centre will be

A

52M(4r2+5R2)\frac { 5 } { 2 } M \left( 4 r ^ { 2 } + 5 R ^ { 2 } \right)

B

25M(4r2+5R2)\frac { 2 } { 5 } M \left( 4 r ^ { 2 } + 5 R ^ { 2 } \right)

C

25M(4r2+5r2)\frac { 2 } { 5 } M \left( 4 r ^ { 2 } + 5 r ^ { 2 } \right)

D

52M(4r2+5r2)\frac { 5 } { 2 } M \left( 4 r ^ { 2 } + 5 r ^ { 2 } \right)

Answer

25M(4r2+5R2)\frac { 2 } { 5 } M \left( 4 r ^ { 2 } + 5 R ^ { 2 } \right)

Explanation

Solution

M. I. of sphere A about its diameter IO=25Mr2I _ { O ^ { \prime } } = \frac { 2 } { 5 } M r ^ { 2 }

Now M.I. of sphere A about an axis perpendicular to the plane of square and passing through its centre will be

IO=IO+M(R2)2I _ { O } = I _ { O ^ { \prime } } + M \left( \frac { R } { \sqrt { 2 } } \right) ^ { 2 } =25Mr2+MR22= \frac { 2 } { 5 } M r ^ { 2 } + \frac { M R ^ { 2 } } { 2 }

[by the theorem of parallel axis]

Moment of inertia of system (i.e. four sphere)= 4IO4 I _ { O } =4[25Mr2+MR22]= 4 \left[ \frac { 2 } { 5 } M r ^ { 2 } + \frac { M R ^ { 2 } } { 2 } \right]

=25M[4r2+5R2]= \frac { 2 } { 5 } M \left[ 4 r ^ { 2 } + 5 R ^ { 2 } \right]