Solveeit Logo

Question

Question: Four rods each of length l have been hinged to form a rhombus. Vertex A is fixed to rigid support, v...

Four rods each of length l have been hinged to form a rhombus. Vertex A is fixed to rigid support, vertex C is being moved along the x-axis with a constant velocity v as shown in the figure. The rate at which vertex B is approaching the x-axis at the moment the rhombus is in the form of a square is –

A

v4\frac { \mathrm { v } } { 4 }

B

v3\frac { v } { 3 }

C

v2\frac { v } { 2 }

D

v2\frac { \mathrm { v } } { \sqrt { 2 } }

Answer

v2\frac { v } { 2 }

Explanation

Solution

Let AC = x and

BE = y

Then, BE2 + AE2 = l2

or y2 + (x2)2\left( \frac { \mathrm { x } } { 2 } \right) ^ { 2 } = l2

\ 2y (dydt)\left( \frac { d y } { d t } \right) + x2\frac { x } { 2 } . dxdt\frac { \mathrm { dx } } { \mathrm { dt } } = 0

\ (dydt)\left( - \frac { d y } { d t } \right) = 12\frac { 1 } { 2 } (x2y)\left( \frac { x } { 2 y } \right) . dxdt\frac { \mathrm { dx } } { \mathrm { dt } }

x = 2y, when the rhombus is a square.

Hence, vB = 12\frac { 1 } { 2 } vc = v2\frac { v } { 2 }