Solveeit Logo

Question

Question: Four points A(6, 3), B(-3, 5), C(4, -2) and D(x, 3x) are given in such a way that \(\dfrac{Area\left...

Four points A(6, 3), B(-3, 5), C(4, -2) and D(x, 3x) are given in such a way that Area(ΔDBC)Area(ΔABC)=12\dfrac{Area\left( \Delta DBC \right)}{Area\left( \Delta ABC \right)}=\dfrac{1}{2} find x
(The question has multiple correct options)
(a) 118\dfrac{11}{8}
(b) 38\dfrac{-3}{8}
(c) 98\dfrac{9}{8}
(d) None of these

Explanation

Solution

Hint:Calculate area of both the triangles involved in the problem. Area of a triangle with the coordinates (x1,y1),(x2,y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right) and (x3,y3)\left( {{x}_{3}},{{y}_{3}} \right) is given by the relation
area=12x1y11 x2y21 x3y31 area=\dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right|
Don’t ignore the modulus sign given with the formula of area to get multiple values of xx . Any function f(x) with mod sign i.e. f(x)\left| f\left( x \right) \right| will open as f(x) and -f(x) both. Use this property to get the answer.

Complete step-by-step answer:
We know area of a triangle with vertices (x1,y1),(x2,y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right) and (x3,y3)\left( {{x}_{3}},{{y}_{3}} \right) can be given as
Area of triangle = =12x1y11 x2y21 x3y31 .......(i)=\dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right|.......\left( i \right)
Now, coming to the question, we are given four points on the coordinate plane, that are A(6,3)A(6, 3), B(3,5)B(-3, 5), C(4,2)C(4, -2) and D(x,3x)D\left( x,3x \right) .And hence, we need to find value of xx if it is given that
Area(ΔDBC)Area(ΔABC)=12........(ii)\dfrac{Area\left( \Delta DBC \right)}{Area\left( \Delta ABC \right)}=\dfrac{1}{2}........\left( ii \right)
So, let us calculate area of triangle ABC with the help of coordinates A, B, C given in the problem and using equation (i) we get
area of ΔABC=12631 351 421 area\text{ }of\text{ }\Delta ABC\text{=}\dfrac{1}{2}\left| \begin{matrix} 6 & 3 & 1 \\\ -3 & 5 & 1 \\\ 4 & -2 & 1 \\\ \end{matrix} \right|
Now on expanding the determinant along row 1, we get
area(ΔABC)=12(6(5×1(2×1))3((3×1)4×1)+1((3)×(2)4×5)) =12(6(5+2)3(34)+1(620)) =1242+2114 =12(6314) =492\begin{aligned} & area\left( \Delta ABC \right)=\dfrac{1}{2}\left| \left( 6\left( 5\times 1-\left( -2\times 1 \right) \right)-3\left( \left( -3\times 1 \right)-4\times 1 \right)+1\left( \left( -3 \right)\times \left( -2 \right)-4\times 5 \right) \right) \right| \\\ & =\dfrac{1}{2}\left| \left( 6\left( 5+2 \right)-3\left( -3-4 \right)+1\left( 6-20 \right) \right) \right| \\\ & =\dfrac{1}{2}\left| 42+21-14 \right| \\\ & =\dfrac{1}{2}\left| \left( 63-14 \right) \right| \\\ & =\dfrac{49}{2} \end{aligned}
area(ΔABC)=492........(iii)area\left( \Delta ABC \right)=\dfrac{49}{2}........\left( iii \right)
Now similarly we can calculate the area of ΔDBC\Delta DBC with the help of given coordinates of D, B and C and applying the formula given in equation (i). So, we get
area(ΔDBC)=12x3x1 351 421  =12(x(5×1(2×1))3x((3×1)4×1)+1((3×2)4×5)) =12(x(5+2)3x(34)+1(620)) =127x+21x14 =1228x14\begin{aligned} & area\left( \Delta DBC \right)=\dfrac{1}{2}\left| \begin{matrix} x & 3x & 1 \\\ -3 & 5 & 1 \\\ 4 & -2 & 1 \\\ \end{matrix} \right| \\\ & =\dfrac{1}{2}\left| \left( x\left( 5\times 1-\left( -2\times 1 \right) \right)-3x\left( \left( -3\times 1 \right)-4\times 1 \right)+1\left( \left( -3\times -2 \right)-4\times 5 \right) \right) \right| \\\ & =\dfrac{1}{2}\left| \left( x\left( 5+2 \right)-3x\left( -3-4 \right)+1\left( 6-20 \right) \right) \right| \\\ & =\dfrac{1}{2}\left| 7x+21x-14 \right| \\\ & =\dfrac{1}{2}\left| 28x-14 \right| \end{aligned}
area(ΔDBC)=14x7.......(iv)area\left( \Delta DBC \right)=\left| 14x-7 \right|.......\left( iv \right)
Now, we know the ratio of area of ΔDBC\Delta DBC and area of ΔABC\Delta ABC is given as 12\dfrac{1}{2} from the equation (ii). So, we get
14x7(492)=12\dfrac{\left| 14x-7 \right|}{\left( \dfrac{49}{2} \right)}=\dfrac{1}{2}
On cross-multiplying the above equation, we get
214x7=492.........(v)2\left| 14x-7 \right|=\dfrac{49}{2}.........\left( v \right)
We know the modulus function can be opened both ways, if any negative term is lying in the modulus function, it will become positive by putting one more negative sign in front of it and positive number will open as positive number. Hence, mod of 14x714x-7 can be opened by both ways, depending on the sign of 14x714x-7 .If it is positive, then no effect at 14x714x-7, but if it will be negative, then we need to put a negative sign in order to make it positive. So, there will be two cases for solving equation (v).

Case 1: If 14x7014x-7\ge 0 i.e. modulus value is positive, we get
2(14x7)=492 28x14=492 28x=14+492=28+492=772 x=772×28=1128 \begin{aligned} & 2\left( 14x-7 \right)=\dfrac{49}{2} \\\ & 28x-14=\dfrac{49}{2} \\\ & 28x=14+\dfrac{49}{2}=\dfrac{28+49}{2}=\dfrac{77}{2} \\\ & x=\dfrac{77}{2\times 28}=\dfrac{11}{28} \\\ \end{aligned}
So, we get x=1128x=\dfrac{11}{28}

Case 2: If 14x7<014x-7<0 , then i.e. modulus value is negative. So, we get
2(14x7)=492 28x+14=492 28x=49214=49282 28x=212 x=212×28 x=38 \begin{aligned} & -2\left( 14x-7 \right)=\dfrac{49}{2} \\\ & -28x+14=\dfrac{49}{2} \\\ & -28x=\dfrac{49}{2}-14=\dfrac{49-28}{2} \\\ & -28x=\dfrac{21}{2} \\\ & x=\dfrac{-21}{2\times 28} \\\ & x=\dfrac{-3}{8} \\\ \end{aligned}
So, values of xx are 118\dfrac{11}{8} and 38\dfrac{-3}{8} .
So option (a) and option (b) is correct answer

Note: Another formula to get area of triangle would be given as
12[x1y1 x2y2 +x2y2 x3y3 +x3y3 x1y1 ]\dfrac{1}{2}\left[ \left| \begin{matrix} {{x}_{1}} & {{y}_{1}} \\\ {{x}_{2}} & {{y}_{2}} \\\ \end{matrix} \right|+\left| \begin{matrix} {{x}_{2}} & {{y}_{2}} \\\ {{x}_{3}} & {{y}_{3}} \\\ \end{matrix} \right|+\left| \begin{matrix} {{x}_{3}} & {{y}_{3}} \\\ {{x}_{1}} & {{y}_{1}} \\\ \end{matrix} \right| \right]
Where (x1,y1),(x2,y2),(x3,y3)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right) are the coordinates of the triangle.
One may try to use heron’s formula i.e. Δ=s(sa)(sb)(sc)\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} , where (a,b,c) are sides and s is a+b+c2\dfrac{a+b+c}{2} and Δ\Delta is representing the area of triangle. But it will be a longer approach and might be complex for one, so always use the identity as per the requirement and given conditions.
Take care of mod sign with the term 14x7\left| 14x-7 \right| , one may miss the modulus sign and hence will get only a single value of ‘x’. So take care and solve it.