Solveeit Logo

Question

Question: Four perpendicular long conducting wires are moving with speeds $v$, $2v$, $3v$ and $4v$ as shown in...

Four perpendicular long conducting wires are moving with speeds vv, 2v2v, 3v3v and 4v4v as shown in figure. If resistance per unit length of wires is λΩm\lambda \frac{\Omega}{m} then induced emf in loop at t=avt=\frac{a}{v} is NBavNBav, then NN is (given at t=0t=0, loop of wires was a square having side of a)

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

The induced emf in a moving conductor is given by E=(v×B)dl\mathcal{E} = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}. Assuming a uniform magnetic field B\vec{B} into the page. Let the velocities be: Top wire: v1=vj^v_1 = v\hat{j} Right wire: v2=2vi^v_2 = 2v\hat{i} Bottom wire: v3=3vj^v_3 = -3v\hat{j} Left wire: v4=4vi^v_4 = -4v\hat{i}

At time tt, the width W(t)=a+(2v(4v))t=a+6vtW(t) = a + (2v - (-4v))t = a + 6vt. The height H(t)=a+(v(3v))t=a+4vtH(t) = a + (v - (-3v))t = a + 4vt.

The induced emfs in each segment (considering clockwise traversal): Top wire: E1=vB(a+6vt)\mathcal{E}_1 = vB(a+6vt) Right wire: E2=2vB(a+4vt)\mathcal{E}_2 = -2vB(a+4vt) Bottom wire: E3=3vB(a+6vt)\mathcal{E}_3 = 3vB(a+6vt) Left wire: E4=4vB(a+4vt)\mathcal{E}_4 = -4vB(a+4vt)

Total emf Etotal=E1+E2+E3+E4\mathcal{E}_{total} = \mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_3 + \mathcal{E}_4 Etotal=vB(a+6vt)2vB(a+4vt)+3vB(a+6vt)4vB(a+4vt)\mathcal{E}_{total} = vB(a+6vt) - 2vB(a+4vt) + 3vB(a+6vt) - 4vB(a+4vt) Etotal=vB[(a+6vt)2(a+4vt)+3(a+6vt)4(a+4vt)]\mathcal{E}_{total} = vB [ (a+6vt) - 2(a+4vt) + 3(a+6vt) - 4(a+4vt) ] Etotal=vB[a+6vt2a8vt+3a+18vt4a16vt]\mathcal{E}_{total} = vB [ a+6vt - 2a-8vt + 3a+18vt - 4a-16vt ] Etotal=vB[(12+34)a+(68+1816)vt]\mathcal{E}_{total} = vB [ (1-2+3-4)a + (6-8+18-16)vt ] Etotal=vB[2a+0vt]=2vBa\mathcal{E}_{total} = vB [ -2a + 0vt ] = -2vBa.

The magnitude is 2vBa=2vBa|-2vBa| = 2vBa. Given induced emf is NBavNBav. Comparing, N=2N=2.