Question
Question: Four perpendicular long conducting wires are moving with speeds $v$, $2v$, $3v$ and $4v$ as shown in...
Four perpendicular long conducting wires are moving with speeds v, 2v, 3v and 4v as shown in figure. If resistance per unit length of wires is λmΩ then induced emf in loop at t=va is NBav, then N is (given at t=0, loop of wires was a square having side of a)

1
2
3
4
2
Solution
The induced emf in a moving conductor is given by E=∫(v×B)⋅dl. Assuming a uniform magnetic field B into the page. Let the velocities be: Top wire: v1=vj^ Right wire: v2=2vi^ Bottom wire: v3=−3vj^ Left wire: v4=−4vi^
At time t, the width W(t)=a+(2v−(−4v))t=a+6vt. The height H(t)=a+(v−(−3v))t=a+4vt.
The induced emfs in each segment (considering clockwise traversal): Top wire: E1=vB(a+6vt) Right wire: E2=−2vB(a+4vt) Bottom wire: E3=3vB(a+6vt) Left wire: E4=−4vB(a+4vt)
Total emf Etotal=E1+E2+E3+E4 Etotal=vB(a+6vt)−2vB(a+4vt)+3vB(a+6vt)−4vB(a+4vt) Etotal=vB[(a+6vt)−2(a+4vt)+3(a+6vt)−4(a+4vt)] Etotal=vB[a+6vt−2a−8vt+3a+18vt−4a−16vt] Etotal=vB[(1−2+3−4)a+(6−8+18−16)vt] Etotal=vB[−2a+0vt]=−2vBa.
The magnitude is ∣−2vBa∣=2vBa. Given induced emf is NBav. Comparing, N=2.
