Solveeit Logo

Question

Question: Four particles of masses m, 2m, 3m and 4m are kept in sequence at the corners of a square of side a....

Four particles of masses m, 2m, 3m and 4m are kept in sequence at the corners of a square of side a. The magnitude of gravitational force acting on a particle of mass m placed at the centre of the square will be

A

24m2Ga2\frac { 24 m ^ { 2 } G } { a ^ { 2 } }

B

6m2Ga2\frac { 6 m ^ { 2 } G } { a ^ { 2 } }

C

42Gm2a2\frac { 4 \sqrt { 2 } G m ^ { 2 } } { a ^ { 2 } }

D

Zero

Answer

42Gm2a2\frac { 4 \sqrt { 2 } G m ^ { 2 } } { a ^ { 2 } }

Explanation

Solution

If two particles of mass mm are placed xx distance apart then force of attraction Gmmx2=F\frac { G m m } { x ^ { 2 } } = F (Let)

Now according to problem particle of mass mm is placed at the centre (P) of square. Then it will experience four forces

FPA=F _ { P A } = force at point P due to particle A=Gmmx2=FA = \frac { G m m } { x ^ { 2 } } = F

Similarly FPB=G2mmx2=2FF _ { P B } = \frac { G 2 m m } { x ^ { 2 } } = 2 F , FPC=G3mmx2=3FF _ { P C } = \frac { G 3 m m } { x ^ { 2 } } = 3 F and

FPD=G4mmx2=4FF _ { P D } = \frac { G 4 m m } { x ^ { 2 } } = 4 F

Hence the net force on P

\therefore =22Gm2(a/2)2= 2 \sqrt { 2 } \frac { G m ^ { 2 } } { ( a / \sqrt { 2 } ) ^ { 2 } } [x=a2=x = \frac { a } { \sqrt { 2 } } = half of

the diagonal of the square]

.