Solveeit Logo

Question

Physics Question on Centre of mass

Four particles of masses m, 2m, 3m and 4m are arranged at the corners of a parallelogram with each side equal to a and one of the angle between two adjacent sides as 6060{}^\circ . The parallelogram lies in the xyx-y plane with mass m at the origin and 4m on the xx- axis. The centre of mass of the arrangement will be located at

A

(32a,0.95a)\left( \frac{\sqrt{3}}{2}a,0.95a \right)

B

(0.95a,34a)\left( 0.95a,\frac{\sqrt{3}}{4}a \right)

C

(3a4,a2)\left( \frac{3a}{4},\frac{a}{2} \right)

D

(a2,3a4)\left( \frac{a}{2},\frac{3a}{4} \right)

Answer

(0.95a,34a)\left( 0.95a,\frac{\sqrt{3}}{4}a \right)

Explanation

Solution

x=m1x1+m2x2+m3x3+m4x4m1+m2+m3+m4\overline{x}=\frac{{{m}_{1}}{{x}_{1}}+{{m}_{2}}{{x}_{2}}+{{m}_{3}}{{x}_{3}}+{{m}_{4}}{{x}_{4}}}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}+{{m}_{4}}} =0+(2m×a2)+(3m×3a2)+(4m×a)m+2m+3m+4m=\frac{0+\left( 2m\times \frac{a}{2} \right)+\left( 3m\times \frac{3a}{2} \right)+(4m\times a)}{m+2m+3m+4m} =ma+4.5ma+4ma10m=9.5ma10m=0.95a=\frac{ma+4.5ma+4ma}{10m}=\frac{9.5ma}{10m}=0.95a y=m1y1+m2y2+m3y3+m4y4m1+m2+m3+m4\overline{y}=\frac{{{m}_{1}}{{y}_{1}}+{{m}_{2}}{{y}_{2}}+{{m}_{3}}{{y}_{3}}+{{m}_{4}}{{y}_{4}}}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}+{{m}_{4}}} =(m×0)+(2m+a3/2)+(3m×a3/2)+(4m×0)m+2m+3m+4m=\frac{(m\times 0)+(2m+a\sqrt{3}/2)+(3m\times a\sqrt{3}/2)+(4m\times 0)}{m+2m+3m+4m} =3am+3×1.5ma10m=2.53am10m=3a4=\frac{\sqrt{3}am+\sqrt{3}\times 1.5ma}{10m}=\frac{2.5\sqrt{3}am}{10m}=\frac{\sqrt{3}a}{4} \therefore Centre of mass is at (0.95a,3a4)\left( 0.95a,\frac{\sqrt{3}a}{4} \right)