Solveeit Logo

Question

Question: Four particles of equal mass M move along a circle of radius R under the action of their mutual grav...

Four particles of equal mass M move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is –

A

GMR\frac { \mathrm { GM } } { \mathrm { R } }

B

C

[GMR(22+1)]\sqrt { \left[ \frac { \mathrm { GM } } { \mathrm { R } } ( 2 \sqrt { 2 } + 1 ) \right] }

D

[GMR(22+14)]\sqrt { \left[ \frac { \mathrm { GM } } { \mathrm { R } } \left( \frac { 2 \sqrt { 2 } + 1 } { 4 } \right) \right] }

Answer

[GMR(22+14)]\sqrt { \left[ \frac { \mathrm { GM } } { \mathrm { R } } \left( \frac { 2 \sqrt { 2 } + 1 } { 4 } \right) \right] }

Explanation

Solution

Gravitational force on each due to other three particles

provides the necessary centripetal force.

\ 2\sqrt { 2 } cos 450 + =

Simplifying it, we get

v = GMR(22+14)\sqrt { \frac { \mathrm { GM } } { \mathrm { R } } \left( \frac { 2 \sqrt { 2 } + 1 } { 4 } \right) }