Solveeit Logo

Question

Physics Question on Newtons law of gravitation

Four identical particles of equal masses 1kg1 kg made to move along the circumference of a circle of radius 1m1 m under the action of their own mutual gravitational attraction. The speed of each particle will be :

A

G2(1+22)\sqrt{\frac{ G }{2}(1+2 \sqrt{2})}

B

G(1+22)\sqrt{ G (1+2 \sqrt{2})}

C

G2(221)\sqrt{\frac{ G }{2}(2 \sqrt{2}-1)}

D

(1+22)G2\sqrt{\frac{(1+2 \sqrt{2}) G }{2}}

Answer

(1+22)G2\sqrt{\frac{(1+2 \sqrt{2}) G }{2}}

Explanation

Solution

F1=Gmm(2R)2=Gm24R2F _{1}=\frac{ Gmm }{(2 R )^{2}}=\frac{ Gm ^{2}}{4 R ^{2}}
F2=Gmm(2R)2=Gm22R2F _{2}=\frac{ Gmm }{(\sqrt{2} R )^{2}}=\frac{ Gm ^{2}}{2 R ^{2}}
F3=Gmm(2R)2=Gm22R2F _{3}=\frac{ Gmm }{(\sqrt{2} R )^{2}}=\frac{ Gm ^{2}}{2 R ^{2}}
Fnet=F1+F2cos45+F3cos45\Rightarrow F _{ net }= F _{1}+ F _{2} \cos 45^{\circ}+ F _{3} \cos 45^{\circ}
=Gm24R2+Gm22R212+Gm22R212=\frac{ Gm ^{2}}{4 R ^{2}}+\frac{ Gm ^{2}}{2 R ^{2}} \frac{1}{\sqrt{2}}+\frac{ Gm ^{2}}{2 R ^{2}} \frac{1}{\sqrt{2}}
=Gm2R2(14+122+122)=\frac{ Gm ^{2}}{ R ^{2}}\left(\frac{1}{4}+\frac{1}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}\right)
=Gm2R2(14+12)=Gm24R2(1+22)=\frac{ Gm ^{2}}{ R ^{2}}\left(\frac{1}{4}+\frac{1}{\sqrt{2}}\right)=\frac{ Gm ^{2}}{4 R ^{2}}(1+2 \sqrt{2})
Fnet=Gm24R2(1+22)=mv2RF _{ net }=\frac{ Gm ^{2}}{4 R ^{2}}(1+2 \sqrt{2})=\frac{ mv ^{2}}{ R }
v=G(1+22)2\Rightarrow v =\frac{\sqrt{ G (1+2 \sqrt{2})}}{2}