Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

Four identical mirrors are made to stand vertically to form a square arrangement as shown in a top view. A ray starts from the midpoint MM of mirror ADAD and after two reflections reaches corner DD. Then, angle θ\theta must be

A

tan1(0.75)tan^{-1}\left(0.75\right)

B

cot1(0.75)cot^{-1}\left(0.75\right)

C

sin1(0.75)sin^{-1}\left(0.75\right)

D

cos1(0.75)cos^{-1}\left(0.75\right)

Answer

cot1(0.75)cot^{-1}\left(0.75\right)

Explanation

Solution

The ray starting from point MM at an angle θ\theta reaches the corner DD at the right along a parallel path. Let aa be the length of the side. From figure, tanθ=x(a/2)...(i)tan\, \theta = \frac{x}{\left(a/2\right)}\quad...\left(i\right) tanθ=axy...(ii)tan \,\theta = \frac{a-x}{y} \quad...\left(ii\right) tanθ=aay...(iii) tan\, \theta = \frac{a}{a-y} \quad...\left(iii\right) From (i) \left(i\right) and (ii)\left(ii\right), we get 2xa=axy\frac{2x}{a}= \frac{a-x}{y} or 2xy=a2xa...(iv) 2xy = a^{2} -xa \quad...\left(iv\right) From (ii)\left(ii\right) and (iii)\left(iii\right), we get axy=aay \frac{a-x}{y} = \frac{a}{a-y} 3xy=2ay\Rightarrow 3xy = 2ay (Using (iv)(iv)) x=2a3 x = \frac{2a}{3} Substituting this value of xx in equation (i)(i), we get tanθ=(2a/3)(a/2)=43tan \,\theta = \frac{\left(2a/3\right)}{\left(a/2\right)} = \frac{4}{3} cotθ=1tanθ=34\therefore cot\, \theta = \frac{1}{ tan\, \theta} = \frac{3}{4} or θ=cot1(0.75)\theta = cot^{-1}\left(0.75\right)