Solveeit Logo

Question

Physics Question on mechanical properties of solids

Four identical hollow cylindrical columns, support a big structure of mass MM . The inner and outer radii of a column are R1R_{1} and R2 R_{2} respectively. Assuming the load distribution to be uniform, the compressional strain of each column is (where YY is Young?? modulus of the column)

A

Mgπ(R22R12)Y\frac{Mg}{\pi\left(R_{2}^{2}-R_{1}^{2}\right)Y}

B

Mg4π(R22R12)Y\frac{Mg}{4\pi\left(R_{2}^{2}-R_{1}^{2}\right)Y}

C

Mgπ(R12R22)Y\frac{Mg}{\pi\left(R_{1}^{2}-R_{2}^{2}\right)Y}

D

Mg4π(R12R22)Y\frac{Mg}{4\pi\left(R_{1}^{2}-R_{2}^{2}\right)Y}

Answer

Mg4π(R22R12)Y\frac{Mg}{4\pi\left(R_{2}^{2}-R_{1}^{2}\right)Y}

Explanation

Solution

Area of cross-section of each column, AA =π(R22R12)=\pi\left(R_{2}^{2}-R_{1}^{2}\right) Since each column supports one-quarter of the load. \therefore\quad F=Mg4F=\frac{Mg}{4} Compressional strain of each column =FAY=\frac{F}{AY} =Mg4π(R22R12)Y=\frac{Mg}{4\pi\left(R_{2}^{2}-R_{1}^{2}\right)Y}