Solveeit Logo

Question

Question: Four grams of graphite is burnt in a bomb calorimeter of heat capacity \(\text{ 30 kJ }{{\text{K}}^{...

Four grams of graphite is burnt in a bomb calorimeter of heat capacity  30 kJ K1 \text{ 30 kJ }{{\text{K}}^{-1}}\text{ }in excess of oxygen at 1 atmospheric pressure. The temperature rises from  300 K \text{ 300 K }to 304 K \text{ 304 K }. What is the enthalpy of combustion of graphite (in kJ mol1\text{ kJ mo}{{\text{l}}^{-1}} )?
A)  360 \text{ }360\text{ }
B)  1440 \text{ 1440 }
C) 360 -360\text{ }
D) 1440 -1440\text{ }

Explanation

Solution

Suppose a system containing the compound A is subjected to the combustion in the calorimetry combustion, then the enthalpy of combustion i.e.
 H = C × θ×Mm \text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ }
Here, H is the constant volume heat of combustion or the enthalpy of combustion, C is the thermal heat capacity of the calorimeter,  θ \text{ }\theta \text{ } is the temperature change, M is the molar mass of the substance and m is the given weight of the substance.

Complete answer:
Suppose a system containing the compound A is subjected to the combustion in the calorimetry combustion, then the enthalpy of combustion i.e.
 H = C × θ×Mm \text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ }
Here, H is the constant volume heat of combustion or the enthalpy of combustion, C is the thermal heat capacity of the calorimeter,  θ \text{ }\theta \text{ } is the temperature change, M is the molar mass of the substance and m is the given weight of the substance.
We have given the following data:
Amount of graphite burnt is,  w = 4 g \text{ w = 4 g }
The heat capacity of the calorimeter is given as  30 kJ K1 \text{ 30 kJ }{{\text{K}}^{-1}}\text{ }
The pressure is equal to 1 atm
The temperature rises from  T1 = 300 K \text{ }{{\text{T}}_{\text{1}}}\text{ = 300 K } to T2 = 304 K{{\text{T}}_{2}}\text{ = 304 K}.
We are interested to find out the enthalpy of combustion of graphite in calorimetry.
Let's substitute the values in the equation, we have,
 H = C × θ×Mm  (30 kJ mol1)×(304300)×12 4  (30 kJ mol1)×4×12 4    H= 360 kJ mol1 \begin{aligned} & \text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ } \\\ & \Rightarrow \left( -30\text{ kJ mo}{{\text{l}}^{-1}} \right)\times \left( 304-300 \right)\times \dfrac{12\text{ }}{4\text{ }} \\\ & \Rightarrow \left( -30\text{ kJ mo}{{\text{l}}^{-1}} \right)\times 4\times \dfrac{12\text{ }}{4\text{ }}\text{ } \\\ & \therefore \text{ H}=\text{ }-360\text{ kJ mo}{{\text{l}}^{-1}} \\\ \end{aligned}
Thus, heat or enthalpy of combustion for the graphite in excess of oxygen is equal to  360 kJ mol1 \text{ }-360\text{ kJ mo}{{\text{l}}^{-1}}\text{ } .

Hence, (C) is the correct option.

Note:
It may be noted that the enthalpy of a reaction can also be written as follows,
 qP = H + ΔngRT \text{ }{{\text{q}}_{\text{P}}}\text{ = H + }\Delta {{\text{n}}_{\text{g}}}\text{RT }
Where qP{{\text{q}}_{\text{P}}} is the total enthalpy of reaction,  Δng \text{ }\Delta {{\text{n}}_{\text{g}}}\text{ }is the difference between the number of moles of the gaseous product and gaseous reactant and T is the temperature ( 298K \text{ 298K } ).  C + O2CO2 \text{ C + }{{\text{O}}_{\text{2}}}\to \text{C}{{\text{O}}_{\text{2}}}\text{ }
 Δng \text{ }\Delta {{\text{n}}_{\text{g}}}\text{ }will be equal to,  1(2) = 1 \text{ 1}-(2)\text{ = }-1\text{ }. Thus, the enthalpy of the graphite would be,
 qP = 360 kJ mol1 + (1)(8.314×103)(298K)   (360 2.477)kJ mol1  qP= 362.47 kJ mol1 \begin{aligned} & \text{ }{{\text{q}}_{\text{P}}}\text{ = }-360\text{ kJ mo}{{\text{l}}^{-1}}\text{ + (}-1)\left( 8.314\times {{10}^{-3}} \right)\left( 298\text{K} \right)\text{ } \\\ & \Rightarrow \text{ (}-360\text{ }-2.477)\text{kJ mo}{{\text{l}}^{-1}}\text{ } \\\ & \therefore {{\text{q}}_{\text{P}}}\text{= 362}\text{.47 kJ mo}{{\text{l}}^{-1}} \\\ \end{aligned}