Question
Question: Four distinct points \(( 2 k , 3 k ) , ( 1,0 ) ( 0,1 )\) and \(( 0,0 )\) lie on a circle for....
Four distinct points (2k,3k),(1,0)(0,1) and (0,0) lie on a circle for.
A
∀k∈I
B
k<0
C
0<k<1
D
For two values of k
Answer
For two values of k
Explanation
Solution
General equation of circle is,
x2+y2+2gx+2fy+c=0
It passes through (0,0), (1, 0) and (0, 1); ∴ c=0
Now 2g+1=0⇒g=−21 and 2f+1=0⇒f=2−1
Hence equation of circle is x2+y2−x−y=0
Point (2k,3k)lies on the circle
∴4k2+9k2−5k=0
⇒ 13k2−5k=0
⇒ k=0 or k=135.